Convergent Projective Non-negative Matrix Factorization

نویسندگان

  • Lirui Hu
  • Jianguo Wu
  • Lei Wang
چکیده

In order to solve the problem of algorithm convergence in projective non-negative matrix factorization (P-NMF), a method, called convergent projective non-negative matrix factorization (CP-NMF), is proposed. In CP-NMF, an objective function of Frobenius norm is defined. The Taylor series expansion and the Newton iteration formula of solving root are used. An iterative algorithm for basis matrix is derived, and a proof of algorithm convergence is provided. Experimental results show that the convergence speed of the algorithm is higher, however it is affected by the initial value of the basis matrix; relative to nonnegative matrix factorization (NMF), the orthogonality and the sparseness of the basis matrix are better, however the reconstructed results of data show that the basis matrix is still approximately orthogonal; in face recognition, there is higher recognition accuracy. The method for CP-NMF is effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Triple factorization of non-abelian groups by two maximal subgroups

The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...

متن کامل

Discriminant Projective Non-Negative Matrix Factorization

Projective non-negative matrix factorization (PNMF) projects high-dimensional non-negative examples X onto a lower-dimensional subspace spanned by a non-negative basis W and considers W(T) X as their coefficients, i.e., X≈WW(T) X. Since PNMF learns the natural parts-based representation Wof X, it has been widely used in many fields such as pattern recognition and computer vision. However, PNMF ...

متن کامل

Projective Nonnegative Matrix Factorization: Sparseness, Orthogonality, and Clustering

Abstract In image compression and feature extraction, linear expansions are standardly used. It was pointed out by Lee and Seung that the positivity or non-negativity of a linear expansion is a very powerful constraint, that seems to lead to sparse representations for the images. Their technique, called Non-negative Matrix Factorization (NMF), was shown to be useful in approximating high dimens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013